If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-19x-120=0
a = 4.9; b = -19; c = -120;
Δ = b2-4ac
Δ = -192-4·4.9·(-120)
Δ = 2713
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{2713}}{2*4.9}=\frac{19-\sqrt{2713}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{2713}}{2*4.9}=\frac{19+\sqrt{2713}}{9.8} $
| x^2+x^2=50 | | 9.6=v/6V/6= | | -5x-(x+3)=12 | | 3u+8+14u-6=104 | | 3+4n/n=7 | | 2y+20=2y | | 10w/1+9w=7 | | X-12y=13 | | x-(x*0.1)=672.35 | | 8x-20=3x+20 | | 7m-4+12=0 | | 8/r=-18 | | 4(4x+6)=3(2x+12)14) | | 5/3x+4=1/3+1/3x | | 13u+8+14u-6=104 | | x-1/4=-2/5 | | 2(w-8)-9=-5(-3w+4)-3w | | X+x/8=20 | | (-2t-6)=10-2t | | 14+5x=49 | | (8x-3)(9x+9)=0 | | 5x-(9x+9)=7x-42 | | Y-10x=30 | | X(x+4)=28 | | 5x/12=4x/7-13 | | 3x+1=X+5= | | a+3/12=4 | | 65x-20=410 | | 96=-16t2+96t+5 | | x^2/2+7/2=2 | | 2x/5+5x=16/15 | | 4.5+1.5x=12 |